Design and Analysis of Air Distributors and Bed Materials of Fluidized Bed Boiler
Ishan Kafle,
Sajesh Bhochhibhoya,
Lokesh Paudel,
Pradeep Parajuli,
Sojan Prajapati,
Pratisthit Lal Shrestha
Issue:
Volume 2, Issue 4, December 2016
Pages:
22-36
Received:
31 October 2016
Accepted:
1 December 2016
Published:
30 December 2016
Abstract: This research deals with the design and analysis of the nozzle and bed materials required for fluidized bed boiler. The design parameters (Diameter of the bed particle, Range of the terminal velocities, Minimum Fluidization /Bubbling velocities, Maximum amplitude and steady velocities) were calculated using Microsoft Excel by interpreting and solving various formulas. Best bed material was selected on the basis of their various characteristics like porosity, adhesive or cohesive properties, resistance to flow etc. An important characteristic change of air distributor velocity with combustion chamber temperature has been established. ANSYS was used as a simulation tool for the analysis. Static Structural solver was used to carry out the strength analysis of the designed wind box. Likewise, computational fluid dynamics (CFD) was carried out using FLUENT solver. Air flow inside the wind box and fluidization phenomena was verified using FLUENT. Furthermore, the designed system was checked for its validity by comparing the results from the Excel sheets and theoretical calculations with simulation results. Lastly, correlation between temperature and velocity inside combustion temperature were determined to identify their relationship with each other.
Abstract: This research deals with the design and analysis of the nozzle and bed materials required for fluidized bed boiler. The design parameters (Diameter of the bed particle, Range of the terminal velocities, Minimum Fluidization /Bubbling velocities, Maximum amplitude and steady velocities) were calculated using Microsoft Excel by interpreting and solvi...
Show More
Experimental Investigation of Pulsating Turbulent Flow Through Diffusers
Issue:
Volume 2, Issue 4, December 2016
Pages:
37-46
Received:
29 November 2016
Accepted:
26 December 2016
Published:
16 January 2017
Abstract: This paper presents the results of an experimental study on a pulsating turbulent flow through conical diffusers with total divergence angles (2θ) of 12, 16, and 24, whose inlet and exit were connected to long straight pipes. To examine the effects of the divergence angle and the nondimensional frequency on flow characteristics, experiments were systematically conducted using a hot-wire anemometry and a pressure transducer. Moreover, the pressure rise between the inlet and the exit of the diffuser was analyzed approximately under the assumption of a quasi-steady flow and expressed in the form of simple empirical equations in terms of the time-mean value, the amplitude, and the phase difference from the flow rate variation. The expressions are in good agreement with the experimental results and very useful in practice. With the increase in the Womersley number, α, and 2θ, the sinusoidal change in the phase-averaged velocity, W, with time becomes distorted, and the W distributions show a more complicated behavior. For the flow at α=10 in the diffusers with large 2θ, the distributions of W are depressed on the diffuser axis. In contrast, for the flow at α=20, W has a protruding distribution on the diffuser axis.
Abstract: This paper presents the results of an experimental study on a pulsating turbulent flow through conical diffusers with total divergence angles (2θ) of 12, 16, and 24, whose inlet and exit were connected to long straight pipes. To examine the effects of the divergence angle and the nondimensional frequency on flow characteristics, experiments were...
Show More